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Abstract Nonhost species can strongly affect the timing
and progression of epidemics. One central interaction—
between hosts, their resources, and parasites—remains sur-
prisingly underdeveloped from a theoretical perspective.
Furthermore, key epidemiological traits that govern disease
spread are known to depend on resource density. We tackle
both issues here using models that fuse consumer–resource
and epidemiological theory. Motivated by recent studies of a
phytoplankton–zooplankton–fungus system, we derive and
analyze a family of dynamic models for parasite spread
among consumers in which transmission depends on con-
sumer (host) and resource densities. These models yield
four key insights. First, host–resource cycling can lower
mean host density and inhibit parasite invasion. Second,
host–resource cycling can create Allee effects (bistability) if
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parasites increase mean host density by reducing the ampli-
tude of host–resource cycles. Third, parasites can stabilize
host–resource cycles; however, host–resource cycling can
also cause disease cycling. Fourth, resource dependence of
epidemiological traits helps to govern the relative domi-
nance of these different behaviors. However, these resource
dependencies largely have quantitative rather than quali-
tative effects on these three-species dynamics. Given the
extent of these results, host–resource–parasite interactions
should become more fundamental components of the bur-
geoning theory for the community ecology of infectious
diseases.

Keywords Host–parasite · Predator–prey · Transmission
rate · Oscillations · Hydra effect · Daphnia

Introduction

Disease ecology has traditionally focused on the epidemi-
ological and coevolutionary relationships between hosts
and their parasites. This approach has produced powerful
insights into the drivers of infectious disease epidemics.
Recently, however, theoretical and empirical research have
increasingly supported the idea that other species can mod-
ulate the spread of infectious disease (e.g., Keesing et al.
2006; Hatcher et al. 2006). As a result, several sets of core
interactions between host, parasite, and other species have
garnered deserved attention. For instance, predators that
selectively prey on infected hosts can depress disease preva-
lence (Packer et al. 2003; Ostfeld and Holt 2004; Hall et al.
2005), although other predators can also facilitate the spread
of disease (Holt and Roy 2007; Cáceres et al. 2009; Duffy
et al. 2011). Additionally, incompetent host species may
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inhibit disease through a “dilution effect” (Norman et al.
1999; Ostfeld and Keesing 2000; Holt et al. 2003; Keesing
et al. 2006; Hall et al. 2009b). These examples illustrate the
importance of building theory for the community ecology of
infectious diseases.

One interaction currently warrants much more develop-
ment. While potentially being parasitized, hosts also con-
sume resources. In fact, many hosts strongly interact with
and depress the abundance of their resources (e.g., Daph-
nia consume algae; gypsy moths can defoliate forests: Ebert
2005; Dwyer et al. 2004). It seems possible that inherent
properties of the host–resource interaction could influence
the initiation and progression of epidemics (Hilker and
Schmitz 2008). For instance, resource limitation can reduce
host density and thus disease risk, since for many directly
and environmentally transmitted parasites, the well-known
invasion threshold R0 (Anderson and May 1991) is propor-
tional to the disease-free susceptible population size. Con-
versely, host–resource interactions that boost host density
might promote disease spread. These possibilities mean that
host and resource traits affecting their interaction may be
pivotal for host–pathogen dynamics. Host–resource inter-
actions may also shape disease epidemics when per-capita
epidemiological traits depend on resource density. Such
resource dependence of disease traits arises commonly. For
instance, resources have been found to influence the pro-
duction of parasites by an array of infective invertebrate
hosts (mosquitoes–parasites: Bedhomme et al. 2004; Tseng
2004, 2006; Daphnia–parasites: Ebert et al. 2000, 2004;
Bittner et al. 2002; Pulkkinen and Ebert 2004; Hall et al.
2009c, 2009a; ladybirds–mites: Ryder et al. 2007; monarch
butterflies–protozoans: de Roode 2008; snails–trematodes:
Johnson et al. 2007). Resource quantity and quality can also
influence transmission rate (Keating et al. 1990; Hunter and
Schultz 1993; D’Amico et al. 1998; Dwyer et al. 2005;
de Roode et al. 2008; Hall et al. 2007, 2009c). Both of these
traits—parasite production and transmission rate—can crit-
ically alter invasion success of parasites and the timing
and dynamical behavior of epidemics (Keeling and Rohani
2008). Thus, from both a theoretical and empirical stand-
point, we need to know if resource dependencies of these
traits can alter disease dynamics.

Here, we tackle both of these issues using mathematical
models that fuse consumer–resource theory with epidemi-
ological theory. We start with the classic Rosenzweig–
MacArthur model of consumer–resource dynamics
(Murdoch et al. 2003). It provides an ideal foundation
because it incorporates reasonable biology in the form
of logistic resource growth and a saturating functional
response of the host, while yielding both steady-state
and cycling dynamics. Then, we layer in a parasite that
infects the consumer (hereafter referred to as the host)
and that is an “obligate killer,” i.e., it produces infectious

spores after killing the host (Ebert and Weisser 1997).
This choice reflects the biology of a focal resource–
host–parasite system: The host Daphnia dentifera is a
small (1–2 mm) and abundant filter feeder whose popu-
lation dynamics are strongly linked to its algal resource
(Tessier and Woodruff 2002). These Daphnia species
become infected with the virulent fungus Metschnikowia
bicuspidata by ingesting infectious spores while feeding.
The parasitic fungus grows inside the host until killing
it and thereby releasing more infectious spores into the
environment. Two key epidemiological processes in this
system depend on algal density. First, the transmission
rate decreases with resource density since contact with
infectious spores increases with foraging effort (rate of
filter feeding, water volume per unit time), and foraging
effort decreases with increasing resource density (Hall
et al. 2007). Second, the per-host yield of infectious spores
increases with resource density, due to energetic and per-
haps immune mechanisms (Hall et al. 2009c, 2010) as
shown in Fig. 1F of Hall et al. (2009a). We present ana-
lytical and computational results describing the relevant
consumer–resource and disease dynamics of this four-
dimensional model and of a related three dimensional
model applicable to directly transmitted diseases.

We find that the occurrence of host–resource cycles
can inhibit parasite invasion when transmission is density-
dependent (cf. Hilker and Schmitz 2008), in some cases
leading to Allee effects (bistability) for the parasite. This
Allee effect arises from host density-dependent transmis-
sion rates, and a “hydra effect” in the underlying consumer–
resource model, i.e., increased mortality increases mean
population size (Abrams 2009 and see Appendix D). Mean-
while, disease can modify and even stabilize host–resource
cycling. Finally, our results show that resource dependence
in epidemiological parameters can modulate these various
dynamics. Resource dependence does not appear to affect
the range of possible qualitative behaviors. However, it
can have very strong quantitative effects, for example, on
the ranges of parameters leading to cycling, steady-state
persistence, and extinction of the parasite.

Model framework

To model the algae–Daphnia–Metschnikowia system and to
achieve our ultimate goal of comparing model dynamics
with and without resource dependencies in key epidemi-
ological rates, we begin with a Rosenzweig–MacArthur
consumer–resource model. We then incorporate an SIZ (S =
susceptible, I = infected, Z = contagion) model of disease
transmission among consumers. We have relaxed the tradi-
tional assumption that the per-capita transmission rate and
spore production rates are constant and instead allow each



Theor Ecol (2014) 7:163–179 165

to depend on resource abundance. That is, we allow what
are classically considered constant epidemiological param-
eters to be functions of resource abundance. Our general
model is obtained by leaving those functions, and the func-
tional form of the predation rate, unspecified. This approach
allows us to address specific questions about our motivating
biological system and to obtain results that apply to similar
systems.

For clarity and mathematical tractability, we also con-
sider a simplified, limiting case of the general model that
is equivalent to assuming an SI disease model, where trans-
mission occurs via direct contacts. This reduced model
(Appendix B) has very similar dynamics to the general
model and is studied here to help clarify certain results.

General model

The model tracks changing densities of the resource, n, sus-
ceptible consumers (herein “hosts”), x, infected hosts, y,
and infectious contagion (e.g., fungal spores), z, which are
dispersed in the environment. For clarity, we scaled the vari-
ables (see Appendix B) so that all population units are in
resource equivalents (except a factor σ(n) for spore density,
z), and time has been scaled by the inverse of the con-
sumer mortality rate (i.e., the average consumer lifetime in
the absence of predation and disease). Our model resembles
similar disease models that have been developed for this and
other systems (Duffy et al. 2005; Hall et al. 2006, 2007;
Duffy and Hall 2008; Hilker and Schmitz 2008) and is given
by Eqs. 1a–1d:

dn

dt
=rn(1 − n)− α(n)(x + y)n (1a)

dx

dt
=α(n)(x + fy)n− (1 +m)x − β(n)xz (1b)

dy

dt
=β(n)xz− (1 +mθ + ν)y (1c)

dz

dt
=σ(n)(1 + ν)y − μz. (1d)

In the absence of hosts, the resource follows a logistic
growth model (Eq. 1a). Both infected (y) and uninfected
hosts (x) feed on the resource at the same per-capita rate
α(n), which for Daphnia we assume to yield a type II func-
tional response. Susceptible (x, Eq. 1b) and infected (y,
Eq. 1b) hosts consume those resources, but infected hosts
suffer reduced fecundity (0 < f < 1; Hall et al. 2009a).
Hosts die at a background rate scaled to rate 1, and due to
predation at rate m. However, predation pressure is more
intense for infected hosts, who die at rate θm, due to selec-
tivity behavior of predators (i.e., θ > 1; Duffy and Hall
2008). Susceptible hosts become infected at per-capita rate
β(n) as they contact spores distributed in the environment
(z, Eqs. 1b and 1c). Motivated by empirical observations,

the transmission rate β(n) can depend on resource density,
n, as described below or can remain constant (β(n) = β).
Infected hosts that die from causes other than predation
(at rate 1 + v) release spores into the environment at rate
σ(n), which can also depend on resource density. Spores
experience their own loss from the environment at rate μ.
Other epidemiological and demographic rates, e.g., rates
of disease progression and host reproduction (Hall et al.
2009a), may also be resource- or disease-status-dependent,
and these may vary among different host–parasite sys-
tems. Here, we restrict our focus to resource-dependent
transmission and spore production.

For some analyses, we need to specify functional forms
for the feeding rate α(n), transmission rate β(n), and spore
yield σ(n). Our most general results only require that
these functions are positive and differentiable. Based upon
empirical results for the Daphnia–Metschnikowia system in
particular, these specific functions are

α(n) = a

k + n
(2a)

β(n) = βc

k + n
(2b)

σ(n) =σ0 · (1 + φn). (2c)

The per-resource, per-host feeding rate α(n) (Eq. 2a)
assumes a type II feeding rate with maximal consumption
rate a and a half-saturation parameter k. The host’s “clear-
ance rate” is the volume of habitat from which the resource
(and spores) is removed per unit time (Grover 1997), and
this measure of foraging effort is proportional to α(n). Since
the clearance rate drives contact with infectious spores, we
require that the per-spore, per-host transmission rate β(n)

(Eq. 2b) be proportional to the clearance rate and likewise
decline with increasing resource density. Parameter βc is the
maximal infectivity of spores once contacted. Based upon
the data described by Hall et al. (2009a), spore yield σ(n)

is assumed to increase with resource density (with positive
intercept σ0 and slope φσ0, see Appendix C for details).

Model parameters and methods of analysis

Parameters values for Eq. 1 (see Appendix C) mostly come
from previous empirical studies (Hall et al. 2006, 2007;
Duffy et al. 2005; Duffy and Hall 2008). In some cases,
broad parameter ranges were chosen to explore a range of
possible dynamics. This is consistent with the broad-range
variability found in natural systems, particularly regarding
algal growth rates and maximum densities.

The model dynamics were analyzed using standard meth-
ods of equilibrium stability analysis and bifurcation theory,
as detailed in the appendices and online-only supplement.
Computational results were obtained through simulation
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and by using the bifurcation continuation software MAT-
CONT in MATLAB.

One nonstandard aspect of our analysis merits spe-
cial note. We sought to compare bifurcation diagrams
between different versions of these models with either con-
stant (resource-independent) or resource-dependent rates of
transmission β(n) and spore production σ(n). These differ-
ences, however, also yield different equilibrium population
sizes. Importantly, equilibrium population size partly deter-
mines equilibrium stability. Thus, to ensure proper compar-
ison of model dynamics, we correct for this by using “equi-
librium matching.” We parameterize each model so that
their equilibrium population sizes are equal. Specifically,
the parameters in Eq. 2 were set to

a = (k + n∗)α (3a)

βc = (k + n∗)β (3b)

σ0 = σ

1 + φn∗
(3c)

so that α(n∗) = α, β(n∗) = β, and σ(n∗) = σ (see Figs. 1
and 2). The equilibrium value n∗ used in our analyses is the
resource–host–parasite coexistence equilibrium n2, unless
stated otherwise (see Appendix S1 for details).

Results

We begin our analysis with a review of the host–resource
dynamics in the absence of disease and of the condi-
tions for parasite invasion into a disease-free system. We
then use bifurcation analysis to determine the range of
possible dynamics in the model with constant (resource-
independent) epidemiological parameters and contrast this
with the dynamics when the disease transmission rate β(n)

and spore production rate σ(n) are resource-dependent.
Much of these dynamics are expected, i.e., they follow

naturally from the dynamics of the underlying consumer–
resource and disease transmission models. However, these
models also exhibit additional unexpected dynamics, specif-
ically instances of bistability. We provide a brief, intuitive
explanation of why such phenomena arise in this system,
and similar models of tri-trophic food webs, but not in
similar disease systems where transmission is frequency-
dependent.

To discuss these dynamics, we use the following nota-
tion for periodic (limit cycle) and equilibrium solutions to
these models. The endemic disease steady state is denoted

Fig. 1 Examples of resource
(n)-dependent consumption rate,
α(n) (a), transmission rate β(n)

(b), and spore yield σ(n) (c),
and their elasticities (d). (a): A
type II consumption rate α(n)n

implies that the rate of
environmental exposure to
spores of the parasite (e.g.,
clearance rate, or volume of
water filtered per unit time) is
proportional to α(n). (b): This
rate of exposure implies that
transmission rate β(n) is
proportional to α(n). Thus,
transmission rate decreases with
resource density. (c): Spore
yield σ(n) increases linearly
with resource density. (d):
Incorporating
resource-dependent rates β(n)
and σ(n) will shift the Hopf
bifurcation curve. Whether this
shift expands or shrinks the
parameter region corresponding
to stable resource–host–parasite
dynamics depends
(approximately) on whether
B(n) (Eq. 5) is increasing or
decreasing, respectively, at the
endemic equilibrium n = n2.
See the main text and online
supplement for additional details
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as EQ2 = (n2, x2, y2, z2). The disease-free host–resource
steady state EQ1 and the resource-only steady state EQn

are as defined above. We refer to the asymptotically stable
resource–host–parasite cycles as LC2 and the disease-free
host–resource cycles as LC1. See Appendix S1 for further
details.

Consumer–resource dynamics and parasite invasion

The general consumer–resource (hereafter host–resource or
disease-free) model implicit in Eqs. 1a and 1b is well under-
stood (e.g., Murdoch et al. 2003 and see our Appendix S1).
This subsystem produces either host–resource coexistence
at steady state (we denote this disease-free equilibrium
EQ1 = (n = n1, x = x1)) or a stable resource-only equilib-
rium EQn = (n = 1, x = 0), depending on the host’s basic
reproduction number,

R0c = α(1)

1 +m
. (4)

The quantity R0c is the expected lifetime number of new
hosts produced per individual under ideal conditions (i.e., at
the resource-only boundary when resource density is maxi-
mal). When R0c > 1, the host can invade the resource-only
equilibrium. If the feeding rate is linear (constant α(n) =
α), the host–resource coexistence equilibrium is globally
stable. However, when the feeding rate saturates accord-
ing to a type II functional response (i.e., Eqs. 2a and 3a),
the host–resource system is the well-known Rosenzweig–
MacArthur model (see Fig. 2) which permits host–resource
cycling. These oscillations arise via the famous “paradox
of enrichment” (Rosenzweig 1971) or, alternatively framed,

the “suppression–stability trade-off” (SST) (Murdoch
et al. 2003) which is the perspective used in this article.
Figure 2 shows this transition to cycling, in the context of
the SST, and illustrates how bifurcation diagrams of these
dynamics can by interpreted similarly, whether we use stan-
dard model parameters (Fig. 2a) or equilibrium matching
(Fig. 2b). Biologically, cycling starts due to an increase in
the maximum resource availability (i.e., producer carrying
capacity) and/or an increase in the effectiveness (efficiency
of consumption, low k, or high maximal consumption rate
α) of hosts. Mathematically, the transition to cycling comes
from a Hopf bifurcation, as detailed in Appendix S1. For our
purposes, it suffices to say that the host–resource dynam-
ics are more likely to oscillate with efficient hosts with
high consumption rates α(n). As expected, the underlying
consumer–resource model drives steady-state and cycling
host population dynamics in the presence of disease.

Whether or not the parasite can invade a disease-free
steady state depends on whether the basic reproduction
number for disease, R0d , is greater than or less than 1. If we
define

B(n) = β(n)σ(n)(1 + ν)

μ
, (5)

then for all models considered,

R0d = B(n1)x1

1 + ν +mθ
. (6)

This can be interpreted as the expected number of
new infections per infected individual in a disease-free
population. We therefore expect to see disease invades a

Fig. 2 Disease-free consumer–resource dynamics of model (1)
assuming a type II consumption rate with either (panel a) no equi-
librium matching (α(n) = a/(k + n), Eq. 2a) or with equilibrium
matching (panel b, Eq. 2a with Eq. 3a). These two cases illustrate

how the interpretation of bifurcation diagrams is largely unaffected
by equilibrium matching. Parameters used: r = 40, f = 0.75, and
m = 0.6
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disease-free host–resource steady state when both R0c and
R0d are greater than 1. Threshold conditions for parasite
invasion of a disease-free host–resource limit cycle LC1

cannot be given analytically. However, for the limiting case
of our model, where transmission is effectively contact-
based instead of spore-based (spore turnover is assumed to
be fast, see Appendix D), the parasite can invade disease-
free cycles LC1 if

〈B(n1)x1〉
1 + ν +mθ

> 1 (7)

where 〈·〉 denotes the average value over the disease-free
limit cycle LC1.

Dynamics of the constant rates models

The nature of the dynamics described above can be more
succinctly summarized, and compared between models,
using bifurcation diagrams. Figures 3 and 4 illustrate these
dynamics. Consider first the dynamics exhibited by the gen-
eral model (Eq. 1) with constant transmission rate β(n) = β

and spore yield σ(n) = σ . The bifurcation diagram in
Fig. 4 summarizes the dynamics of this model over a range
of different parameter values related to the predation effi-
ciency of the hosts, which increases with increasing α and
decreasing k. Each region 1©– 5© contains parameter val-
ues that yield the corresponding dynamics described above,
and the boundaries between those regions are characterized

Fig. 3 Examples of how the model dynamics change as parameters
are varied along two different paths through the bifurcation diagram in
Fig. 5d. Shading indicates different regions separated by bifurcations.
See Fig. 4 for region 1©– 5© definitions and bifurcation details. Solid
lines indicate that the three-species steady state (EQ2) is (locally) sta-
ble; dashed lines indicate that it is locally unstable; and dotted lines
mark the minimum and maximum values of stable limit cycles with
disease (LC2) or without (LC1). As the half-saturation constant (k)
increases, hosts become less efficient consumers. On the left (α = 9),

as k increases, cycle amplitude is reduced and mean population size
increases, permitting parasite invasion. Combined with increased dis-
ease mortality, this eventually stabilizes cycling. On the right (α =
6.5), the nonlinear increase in mean host density (not shown) per-
mits a region of bistability between resource–host–parasite cycling
(LC2) and steady-state coexistence (EQ2) as discussed in the text and
Appendix D. Though not shown, in 3©, there is an unstable limit cycle
(LCu) that is part of the separatrix between basins of attraction for the
two bistable states
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Fig. 4 A bifurcation diagram summarizing the five different behav-
ioral regimes (see Fig. 3) of model (1) with constant transmission rate
β and spore yield σ . The bifurcations are plotted over a range of two
key traits of the host’s type II functional response-based feeding effort
(see Eqs. 2a and 3a): equilibrium matched consumption rate α and

half-saturation constant k. For a bifurcation summary, see Appendix A.
See Appendix A for description of other bifurcations that could arise.
Parameters used: r = 40, f = 0.75, m = 0.6, θ = 9, ν = 1, μ = 19,
β = 25, and σ = 0.9

by different types of bifurcations. Figure 3 illustrates these
dynamics along the vertical paths at α = 6.5 and α = 9 in
Fig. 4 (under the resource-dependent model). Additionally,
less biologically relevant dynamics can occur in the param-
eter regions shown, but for clarity, we have omitted these
cases (see Appendix A for details).

In region 1©, the endemic disease equilibrium EQ2 is
stable: disease persists in the host–resource system without
population oscillations. In some parts of this region, disease-
free initial conditions lead to disease-free host–resource
cycling, which is otherwise stabilized by disease-induced
mortality (see Fig. 4 and compare with Fig. 2). In region 2©,
the stable interior equilibrium EQ2 has lost stability via a
supercritical Hopf bifurcation (labeled H−), causing the sys-
tem to exhibit resource–host–parasite cycles LC2 (see Fig. 3
for equivalent dynamics). In region 5©, the disease is unable
to persist due to low average population density (see Eq. 7)
and the system exhibits asymptotically stable disease-free
host–resource cycles LC1. Regions 3© and 4© are regions
of bistability between the endemic disease equilibrium EQ2
and cycling dynamics. That is, different initial conditions
will either lead to the endemic disease steady state EQ2
or will lead to host–resource cycling with (region 3©, LC2

stable) or without (region 4©, LC1 stable) disease.
This bistability (regions 3©, 4©) is absent from a similar

system with frequency-dependent, instead of host-density-
dependent, disease transmission (Hilker and Schmitz 2008).
To intuit why density-dependent transmission yields bista-
bility, consider the average host population size during
host–resource cycling. The Rosenzweig–MacArthur model
exhibits a hydra effect (Abrams 2009) in the cycling regime:
increased mortality leads to a resource-mediated increase
in average population size. Parasites, by increasing host

mortality and thus host density, facilitate their own trans-
mission, producing a strong Allee effect for the parasite (see
Appendix D for details).

The dynamics illustrated in Fig. 3 and summarized in
Fig. 4, particularly the nature of the bistability in regions
3© and 4©, can be understood by considering the generic

dynamics near a generalized Hopf bifurcation (GH and
curves H+, H−, and LPC in Fig. 4) combined with the loss
of parasites at the transcritical bifurcation of limit cycles,
BPC. A brief summary of these bifurcations can be found in
Appendix A.

Dynamics with resource-dependent epidemiological
processes

We can now address how resource-dependent rates of
susceptibility (transmission rate β(n)) and infectiousness
(spore yield σ(n)) affect two key features of the dynam-
ics described above: the tendency for the system to cycle
and the ability of parasites to persist in the host popula-
tion. To accomplish this, we first consider how resource-
dependent epidemiological processes affect the parasite’s
ability to invade a disease-free population by considering
their impact on R0d . Second, we compare bifurcation dia-
grams for the constant (resource-independent)–rate model
described above and in Fig. 4 and for the variable (resource-
dependent)–rates model with nonconstant transmission rate
β(n) and spore production rate σ(n). Specifically, we focus
on the transition between steady-state and cycling dynam-
ics marked by the Hopf bifurcation curve H and the loss of
disease from the three-species cycles marked by BPC.

The resource dependence of R0d (Eq. 6) has two note-
worthy implications: First, the shape of that dependence
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(i.e., of β(n) and σ(n)) may skew this classical relationship
between basic reproduction number R0d and s2 = x2/x1,
i.e., the number of susceptibles at the endemic equilibrium
(x2) relative to the number at the disease-free state (x1).
That is, classically, R0d = 1/s2; however, with resource-
dependent transmission (β(n)) and spore yield (σ(n)),
R0d = B(n1)

B(n2)
1
s2

. That is, ignoring resource-dependent epi-
demiological processes may bias inferences based on epi-
demic data. Second, host populations in strongly seasonally
forced environments experience substantial resource fluctu-
ations. Therefore, efforts to estimate disease risk (i.e., R0d )
from population data (e.g., Cintrón-Arias et al. 2009) may
benefit from including known resource dependencies.

Beyond these effects on R0d , resource-dependent epi-
demiological processes can further affect parasite persis-
tence and the tendency for the system to cycle, as illustrated
in Fig. 5. Here, we consider the isolated (Fig. 5b, c) and
combined (Fig. 5d) effects of resource-dependent β(n) and
σ(n), in particular, how each affects the location of the
Hopf bifurcation curve H (i.e., the tendency of the system
to cycle) and the size of regions 2© and 3© (i.e., parasite
persistence under cycling dynamics).

Resource-dependent epidemiological rates can either
shrink or expand the region of parameter space that yield
steady-state dynamics (region 1© as well as 3© and 4©)
by shifting the Hopf bifurcation curve in parameter space
(recall Fig. 2). In general, we can predict the direction of

this shift using the slopes (i.e., derivatives) of the resource-
dependent rate functions, σ ′(n) and β ′(n), but stated in
terms of their elasticities, which are defined as follows: For
a given function, F(n), the elasticity of F with respect to n
is a dimensionless quantity that represents the proportional
change in F(n) per proportional change in n and is defined
as EF ≡ F ′(n) n

F(n)
. Two key properties of elasticities are

used below: First, the elasticity EF and derivative F ′(n)
have the same sign whenever the values F(n) and n are
positive. Second, if function F is proportional to the prod-
uct of two functions, e.g., F(n) ∝ g(n)h(n), then elasticity
of that function is the sum of the elasticities of functions g
and h: EF = Eg + Eh (see Fig. 1). Lastly, we denote elas-
ticities evaluated at the endemic-disease steady-state (EQ2)
resource density (n2) with an asterisk, e.g., EF∗.

The shift in the location of the Hopf curve H (relative
to resource-independent case with constant β and σ , i.e.,
constant direct transmission rate, Eq. 5) will either shrink
or expand the regions of steady-state three-species coexis-
tence. To interpret the criteria for whether this region shrinks
or expands, we first consider the limiting case of our model
that assumes fast spore turnover (see Appendix B). For this
simplified model, the direction of the shift depends on the
sign of the net elasticity EB∗ (i.e., the elasticity of the direct
transmission rate B(n); see Eq. 5 and Fig. 1), given by

EB∗ = Eβ∗ +Eσ∗. (8)

Fig. 5 Comparison of model
(1) dynamics with constant and
resource-dependent rates of
transmission β(n) and spore
production σ(n). Panel a shows
the same constant–rates model
diagram as in Fig. 4. Panels b
and c show the diagrams for
model (1) with resource
dependence in either β(n) or
σ(n), but not both. In panel d,
both rates are
resource-dependent. See Fig. 4
for examples of the dynamics in
each parameter region. See
Appendix A for definitions and
a summary of the bifurcations,
and see Appendix A for
additional dynamics not shown
in these diagrams
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If EB∗ is positive (i.e., if B(n) is increasing at n2), H will
occur at lower k values, thus expanding the range of steady-
state three-species coexistence. If EB∗ is negative (i.e., B(n)
decreasing at n2), this region of steady-state coexistence
will shrink (see Appendix S2 for details).

Importantly, this biologically intuitive criterion also
approximately holds for the general model (Eq. 1). Apply-
ing this result to our motivating Daphnia–Metschnikowia
example (see Figs. 1 and 5a, d), the net resource depen-
dence is negative, suggesting an upwards shift in the Hopf
bifurcation H and thus a reduced set of parameters lead-
ing to steady-state three-species coexistence. Moreover, the
criteria imply that a decreasing transmission rate β(n) desta-
bilizes the system (i.e., increases the tendency to cycle;
Fig. 5b) while the increasing spore yield σ(n) stabilizes it
(i.e., decreases the tendency to cycle; Fig. 5c).

The exact criterion for the general model (Eq. 1) is the
same as in the reduced model (Eq. B2) if spore yield alone is
resource-dependent: If σ(n) increases with resource density
n, this will stabilize the dynamics (i.e., expand the region
of EQ2 stability, as is the case with the direct transmission
model). If transmission rate β(n) is resource-dependent, the
exact criteria for the general model are less intuitive but can
be computed (see Appendix S2 for details). If spore dynam-
ics are fast (e.g., when spore loss rate, μ, and spore yield,
σ , are relatively large), then this criterion (for the general
model, Eq. 1) agrees with the criteria for the reduced model
(Eq. 8).

Resource-dependent epidemiological processes also
affect nonequilibrium population dynamics, including
parasite–host–resource cycling as illustrated in Fig. 5. There
we see disease is lost from host–resource cycling as we
cross the transcritical bifurcation of limit cycles, BPC. Here,
the invasion criteria Eq. 7 drops below 1, and disease can
no longer invade the disease-free cycle LC1. Comparing
resource-dependent and resource-independent cases, we see
that resource-dependent spore yield σ(n) given by Eq. 2c
inhibits parasite persistence during host–resource cycling,
as indicated by the reduced sizes of regions 2© and 3© (com-
pare a and c in Fig. 5). This is because, at higher overall
consumption rates (higher α), average resource levels are
driven down. According to Eq. 2c, this reduces the spore
yield of infected hosts. This diminished ability to invade
would be reversed if σ(n) was instead a decreasing func-
tion of resource density n. In contrast, a resource-dependent
transmission rate β(n) (compare a and b in Fig. 5) has
the opposite effect. Low average resource levels during
host–resource cycling yield an increase in infectiousness by
increasing the contact rate via increased foraging activity.
This offsets the consequences of low average host density
and allows increased parasite persistence. For our motivat-
ing example (Fig. 5d), the effects of β(n) outweigh those
of σ(n), resulting in a slight increase in the tendency to

cycle and a large increase in the range of parasite persistence
during nonequilibrium dynamics.

Discussion

Trophic interactions and disease processes commonly inter-
act in nature, yet theory that combines the two remains
relatively scarce. The results presented here show how these
two forces jointly shape the dynamics of parasitized con-
sumer populations. In particular, host–resource (consumer–
resource) dynamics can profoundly affect the invasion and
persistence of parasites in host populations, and disease-
related mortality can greatly affect host population dynam-
ics. Moreover, we have shown that these host–parasite
dynamics can be altered when key epidemiological traits of
hosts depend directly on resource abundance, i.e., the trans-
mission rate β(n) and contagion (spore) production rate
σ(n)). While the dynamic repertoire remains qualitatively
intact, important quantitative features of these dynamics can
vary greatly. These results can be applied to systems with
related resource dependencies, and our approach can be
followed to investigate other host–parasite systems where
epidemiological and demographic rates may be resource- or
disease-status-dependent.

To detail these findings in the preceding sections, we
focused on the key bifurcations that summarize these three
species dynamics across a range of host traits central to the
suppression–stability trade-off (i.e., the paradox of enrich-
ment: Murdoch et al. 2003). We then compared those
dynamics between models with and without these resource
dependencies. This discussion is similarly organized: First,
we highlight some noteworthy insights from the dynam-
ics of the three-species models and then discuss the role
of resource-dependent epidemiological processes in that
context.

Resource–host–parasite dynamics

The three-species dynamics exhibited by models Eqs. 1a–d
and B2a–c include host–resource (consumer–resource)
cycling, with and without parasite persistence, and instances
of bistability between the endemic (three-species) steady
state and cycling with or without parasites. These dynamics
occur near a generalized Hopf (Bautin) bifurcation, which
likely occur in similar three-species food web models. In sit-
uations of bistability between endemic disease and disease-
free host–resource cycles, there is an Allee effect for the
parasite: it can persist when it is abundant, but cannot invade
when it is rare. This Allee effect arises from (1) increased
mortality from disease, (2) a hydra effect (increased mor-
tality increases population size; Abrams 2009) whereby
average host density increases with mortality (see Appendix
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D; also Matsuda and Abrams 2004; Sieber and Hilker
2011), and (3) density-dependent transmission (cf. Hilker
and Schmitz 2008). Parasite spread during host–resource
cycling requires a sufficiently high average host density to
invade and create endemic disease (see Appendix D for an
extension of the well-known R0 > 1 criterion; Anderson
and May 1991; Keeling and Rohani 2008). During large-
amplitude cycles, average host density can be quite low
(Appendix D; Armstrong and McGehee 1980; Murdoch
et al. 2003)—too low to support parasites. However,
increased mortality from infection during host–resource
cycling reduces this tendency for host populations to cycle
and simultaneously increases average host density via the
hydra effect. Thus, since parasite transmission here is host-
density-dependent, the parasite facilitates its own invasion
of cycling host populations (Appendix D).

These results predict that host–resource cycling can
exclude parasites if mean host density becomes too
low. Importantly, host–resource cycling requires hosts
that are efficient consumers, i.e., they exhibit suffi-
ciently high feeding rates α or low half-saturation con-
stants k. Interestingly, this applies to fast-feeding and
efficient hosts that might otherwise be expected to sup-
port parasites because of a high transmission rate (i.e.,
a high probability of contacting spores). Additionally, we
predict the Allee effect for parasites invading cycling
host populations to only occur if parasite transmission
rates are host-density-dependent. This Allee effect is not
expected if transmission is frequency-dependent (Hilker
and Schmitz 2008) since increased average host density
would not lead to an increased transmission rate. Allee
effects can also occur in host–pathogen systems through
other mechanisms, including nonlinear transmission rates,
host immune responses, local spatial interactions, demo-
graphic stochasticity, predation, and positive density depen-
dence in hosts (e.g., Holmes 1997; Gubbins et al. 2000;
Regoes et al. 2002; Hall et al. 2005; Hilker et al. 2009).

As we have shown, the underlying host–resource sys-
tem promotes cycling dynamics of disease, and disease can
strongly dampen (and even stabilize) host–resource cycling.
These results echo those revealed from a resource–host–
parasite system with different underlying epidemiology
(Hilker and Schmitz 2008). When hosts are highly efficient
consumers (high feeding rates α or low half-saturation con-
stants k), they induce host–resource cycling. If such a sys-
tem is far from the Hopf bifurcation, or if disease-induced
mortality is limited, parasite prevalence will cycle as host
density cycles (Hilker and Schmitz 2008; Appendix D).
This result helps to explain why disease might fluctuate
in natural systems (Hethcote and Levin 1989; Greenman
and Hudson 1997). Typically, mechanisms to explain
disease cycles depend on seasonal forcing or specific
epidemiological details (Hethcote 1973; London and Yorke

1973; Anderson and May 1981; Hethcote et al. 1981;
Liu et al. 1986) or Allee effects in the underlying host
dynamics (Hilker et al. 2009). Again, here we see that
host–resource cycling, like predation (Dwyer et al. 2004;
Hall et al. 2005), can stimulate oscillations in disease.
Higher levels of disease-induced mortality, however, allow
parasites to essentially push the underlying host–resource
systems from cycling to stable steady-state behavior. Thus,
parasitism might help to explain why some natural host–
resource systems often cycle less than predicted by simpler
but reasonable consumer–resource models without disease
(McCauley and Murdoch 1990; Kirk 1998; McCauley et al.
1999; Jensen and Ginzburg 2005).

Resource-dependent disease processes

Incorporating resource-dependent epidemiological traits in
these models had a big impact on some important quanti-
tative aspects of these dynamics, despite yielding limited
qualitative differences. In general, resource-dependent epi-
demiological traits of hosts can either stabilize or destabilize
three species cycling dynamics. We concluded that, for the
most part, both traits typically stabilize dynamics when
they increase with resource density, but destabilize them
when they decrease with density (Eq. 8). When these traits
oppose each other (e.g., transmission rate decreases while
spore yield increases with produce density, as in the moti-
vating Daphnia system: Hall et al. 2007, 2009c, b, 2010),
their combined effect on stability can be calculated for
a broad family of models as illustrated in Fig. 1. Using
parameter values and functional forms from the Daph-
nia system, resource-dependent transmission rate exerted
the strongest, destablizing effects on resource–host–parasite
dynamics. Additionally, this resource-dependent transmis-
sion rate greatly expanded the region of parameter space
that permitted parasite invasion of host–resource cycles.
This suggests that, for host populations that experience
variable resource dynamics, the occurrence and severity
of epidemics could be substantially altered by resource
dependence in key epidemiological processes (even if host
population size remains constant). Together, these results
underscore the importance of uncovering and quantify-
ing third-party dependencies among traits that affect pair-
wise interspecific interactions within communities and the
importance of developing theory to predict the population
and community level consequences of those dependencies.

In general, this study starkly illustrates how host ecol-
ogy can shape the dynamics of disease epidemics, but it
also provides a foundation for multiple avenues of future
research. For instance, these models can exhibit still more
kinds of dynamics (see Appendix A), some of which may
be relevant to other disease systems or tri-trophic food web
models. Additionally, host populations could evolve dur-
ing epidemics. Evolution of hosts in the Daphnia system
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could intimately interact with these resource–host–parasite
dynamics because feeding rate and epidemiological traits
among clonal genotypes are mechanistically linked (Hall
et al. 2010). Furthermore, the host–resource system often
experiences (periodic) seasonal forcing. This forcing could
change the underlying host–resource dynamics (Scheffer
et al. 1997) and thereby alter disease dynamics. Moreover,
host–resource interactions need to be more fully integrated
into existing theory for the community ecology of infec-
tious disease. For instance, some species compete with hosts
for resources but remove parasites through a dilution effect
(Norman et al. 1999; Keesing et al. 2006; Hall et al. 2009b).
Also, predators indirectly influence consumer–host cycling
and disease dynamics (Scheffer et al. 2000; Dwyer et al.
2004; Hall et al. 2005). Connecting host–resource interac-
tions with the epidemiologically relevant processes like the
dilution effect and predation may greatly enhance theory for
both. Thus, we hope that the resource–host–parasite models
studied here and elsewhere (e.g., Hilker and Schmitz 2008)
play more central roles in future developments of theory for
infectious disease.
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Appendix A: Bifurcation summary

The dynamics illustrated in Fig. 4, particularly the bista-
bility in regions 3© and 4©, can be summarized as the
generic dynamics near a generalized Hopf (Bautin) bifur-
cation with a nearby transcritical bifurcation of limit cycles
BPC that correspond to the loss of parasites from the three-
species cycles LC2. A generalized Hopf bifurcation has
three branches (see Fig. 4): a supercritical Hopf H− (to the
right of GH), a subcritical Hopf H+ (to the left of GH),
and a saddle-node bifurcation of limit cycles LPC (for limit
point cycle). The nature of the bistability that arises between
LPC and H+, and the basins of attraction for each outcome,
can be more clearly understood by considering the dynam-
ics near these two bifurcation curves (also see Fig. 3). The
subcritical Hopf H+ gives rise to an unstable periodic orbit
LCu which exists for k values above H+ in regions 3© and
4© and forms part of the separatrix that separates the basins

of attraction between the three-species steady-state EQ2 and
the stable limit cycle in regions 3© (LC2, parasites present)
and 4© (LC1, no parasites). Ignoring BPC for the moment,

traversing 3© and 4© from H+ towards LPC, the amplitude
of the unstable cycle LCu increases as it approaches the
stable limit cycle. Continuing across LPC, the two cycles
collide (forming a limit point cycle, where LCu = LC2, at
LPC) then disappear, leaving only the stable disease equi-
librium (EQ2) as the lone attractor in region 1©. As a result,
the basin of attraction for the stable interior equilibrium,
EQ2, is vanishingly small near the subcritical Hopf bifur-
cation, H+ (i.e., most trajectories result in cycling), while
the basin of attraction for EQ2 dominates near LPC. BPC
separates regions 3© (cycling with disease) and 4© (without
disease) and marks the threshold at which disease can no
longer persist in the cycling host population.

Appendix B: Model derivation

The general model (Eq. 1) is a rescaled version of the
following model, which is based on spore-based fungal par-
asitism of Daphnia sp. N is producer density (per liter),
X is susceptible consumer density (per liter), Y is infected
consumer density (per liter), Z is infectious spore density
(spores per liter), and time τ is in days. Table 1 contains
parameter descriptions, ranges, and values.

dN

dτ
=r̃N(1 − N/K)− α̃(N)N(X + ρY ) (B1a)

dX

dτ
=χα̃(N)N(X + f̃ ρY )− (dx + m̃)X − β̃(N)XZ

(B1b)

dY

dτ
=β̃(N)XZ − (dx + ν̃ + m̃)Y (B1c)

dZ

dτ
=σ̃ (N)(dx + ν̃)Y − μ̃Z − ηC̃(N)Z(X + ρY ) (B1d)

The rescaled model (Eq. 1) is given by t = τ
1
dx

, r = r̃
dx

,

α = χα̃
dx

, k = k̃/K , f = f̃ ρ, m = m̃
dx

, C = ηC̃χK 1
dx

,

Cc = ηC̃c
χ
dx

, β = β̃χK 1
dx

, ν = ν̃
dx

, σ = σ̃ , and μ = μ̃
dx

.

This leaves the rescaled variables as n = N/K , x = X
χK

,

y = Y
χK

, and z = Z
χK

. We further simplify this model by
assuming that consumption does not deplete spores in the
environment, i.e., that C ≡ 0. See Table 2 for parameter
descriptions.

Reduced model

Model (1) can be simplified by assuming that spore turnover
is fast (σ , μ very large). In that case, spore density
z(t) tracks the equilibrium of Eq. 1d obtained by hold-
ing the density of infected hosts y(t) constant, z(t) =(
σ(n(t))(1+ν)

μ

)
y(t). Substituting this expression for z(t) into
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Table 1 Parameter values and descriptions for the unscaled model

Parameter Value Range Description

K 104 102 − 109 Algal carrying capacity (no. per liter) (Porter et al. 1982)

r̃ 2 0.69 − 2.8 Algal growth rate (no. per day) (Sorokin and Krauss 1958)

ã 3.16 × 102 ≈ 1
100d − 1

10d Max. rate of consumption for type II α(n) (Hall et al. 2007)

k̃ 0.6 × 104 – Half saturation constant for type II α(n) (Hall et al. 2007)

ρ 1 – Relative feeding rate of infected individuals

f 0.75 0 − 1 Relative fecundity of infected individuals

χ 0.4 × 10−2 – Births per consumed resource (Duffy et al. 2005)

dx 0.05 0.02 − 0.1 Host mortality ≈ per lifetime (per day) (Hall et al. 2006)

m̃ 0.03 0 − 0.5 Fish predation rate (individuals per day) (Hall et al. 2006)

C̃ 0.1 ≤ 0.1 Consumption rate (type I α(n)) (liters per day per consumer)

C̃c 500 0 − 1,000 Max. C(n) (type II α(n)) (Porter et al. 1982)

η 0.7 0 − 1 Spore consumption efficiency

β̃ – ≥ 0 Infection rate (fit to give ≤20 % prevalence) (Hall et al. 2006)

β̃c – ≥ 0 Per capita per spore infection rate

ν̃ dx ≈ dx Additional non-fish-related mortality for infected individuals

θ 3 1 − 10+ Fish selectivity (Duffy et al. 2005; Hall et al. 2006)

μ̃ 0.033 ≥ 0 Loss rate of infectious spores (no. per liter) (Hall et al. 2006)

σ 6.4 × 104 0 − 105 Spores produced per dead infected individual (Hall et al. 2006)

Units are individuals per liter, and time is in days. The broad range for d is based on the broad range of algal densities observed in nature. Growth
rate r based on a range of 1–4 doublings per day

Eqs. 1b and 1c gives a reduced model with direct disease
transmission,

dn

dt
=rn(1 − n)− α(n)(x + y)n (B2a)

dx

dt
=α(n)(x + fy)n− (1 +m)x − B(n)xy (B2b)

dy

dt
=B(n)xy − (1 +mθ + ν)y, (B2c)

where B(n) is the direct transmission rate, i.e., the rate of
new infections per infectious individual (Eq. 5).

With this simplification, the force of infection now
depends on the current density of infectives, by assuming
that spores are so short-lived that the current spore den-
sity is proportional to the current density of infectives. The
reduced and general models have the same equilibria for n,
x, and y, and all of the bifurcations mentioned in the main
text occur in both the general and reduced models.

Table 2 Parameters of the scaled model (Eq. 1)

Parameter Value Description

r 40 Producer growth rate (per day) (Sorokin and Krauss 1958)

α – Type I consumption rate (per consumer per day) (Hall et al. 2007)

a – Maximum of type II consumption rate α(n)

k – Half saturation constant for type II α(n) (Hall et al. 2007)

ρ 1 Relative feeding rate of infected individuals

f 0.75 Relative fecundity of infected individuals

m 0.6 Fish predation rate on susceptible Daphnia (Duffy et al. 2005)

β – Infection rate (per susceptible per spore) (Duffy et al. 2005)

ν 1 Additional mortality for infected individuals unrelated to fish depredation

θ 3 Fish selectivity for infected individuals (Duffy et al. 2005; Hall et al. 2006)

σ – Spore production rate (per infected)

φ 0.5 Slope parameter for n-dependent spore production rate σ(n)

μ 0.66 Loss rate of infectious spores (per liter) (Hall et al. 2006)
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Appendix C: Parameter values

Parameter values and ranges were determined based upon
their biological interpretations, using published values of
those quantities when available. Other values come from
previously published models of Daphnia parasitism or
algae consumption. Within biologically plausible parameter
ranges, certain parameter values were further specified in
order to yield dynamics consistent with field and laboratory
observations or produce specific dynamic behaviors.

Algal growth and consumptions rates are based on the
wide range of natural variability in green algae and their
interactions with Daphnia. Intrinsic growth rate r̃ is based
on 1–4 doublings day−1 for green algae (e.g., Sorokin and
Krauss 1958) and maximum algal densities are based on
naturally occurring levels during typical algal blooms.

Daphnia feeding (or filtering) rates were based on pre-
viously published population growth rates and observed
feeding rates (Hall et al. 2007; Duffy et al. 2005; Porter et al.
1982, for example), though such rates in reality likely
depend on other factors including temperature and food
quality and thus are only loosely defined here. Under the
units of milligrams dry weight per liter (as in Hall et al.
2007), we have maximum consumption rates a ≈ 1–2
orders of magnitude smaller than N < K , with k roughly of
the same order of magnitude as K , though slightly smaller.
Based on Duffy et al. (2005) where the maximum birth
rate was 0.4 day−1 (with generation times of 1–3 weeks),
we can assume that the maximum birth rate χa is equal to
bmax = 0.4 day−1 from Duffy et al. (2005), which implies
(by a ≈ 102 above) that χ = 0.4 × 10−2.

Disease parameters given in Table 1 yield an R0,dis only
slightly larger than 1 (though simulation suggests that this
does not guarantee disease persistence in the presence of
host–resource cycles). Thus, the spore-based infection rate
was allowed to be somewhat flexible in order to attain
prevalence levels consistent with those observed in naturally
occurring M. bicuspidata epizootics.

The maximum per consumer filtering rate (liters per
day) for Daphnia magna is taken from Fig. 1 of Porter
et al. (1982), which suggests nearly 4 mL h−1. Convert-
ing to the proper units and rounding yields approximately

0.1 L day−1 = C̃c

k̃
. With the above, we compute C̃c as 0.1k.

To estimate plausible values of φ, we rely on the data in
Fig. 1f of Hall et al. (2009a). The best fit line to those data
gives σ(1)/σ(0) = (1 + φn) ≈ 0.03/0.02, a quantity inde-
pendent of σ0. To use this to estimate φ, we must first know
what weight corresponds to the algal carrying capacity (i.e.,
what n corresponds to 1 mg C/L?). Assuming that 1 mg C/L
corresponds to the carrying capacity n = 1—a conserva-
tive (low) estimate—these data imply φ ≈ 0.5. If 1 mg C/L
corresponds to some density below carrying capacity, then
φ = 0.5/n > 0.5. Thus, if carrying capacity corresponds

to W (milligrams C per liter), then φ = W · 0.5. To avoid
extrapolating beyond the available data, larger values of W
may require a saturating or other functional form of σ(n).
In the text, we assume the conservative estimate of φ = 0.5.

Appendix D: Consumer–resource models with slow
disease dynamics

Disease can reduce consumer fecundity, increase consumer
mortality, or both. How does this affect the consumer–
resource dynamics? How do those changes affect disease
dynamics? How is bistability maintained between cycling
and steady-state dynamics in the presence of disease? To
answer these questions, we consider a limiting case of
model B2 with constant B(n) = B .

Assuming x + y > 0, we transform Eq. B2 to be in
terms of resource density n, total consumers p = x + y,
and fraction of infected consumers i = y/(x + y). This
is done by substituting f = 1 − g ∈ (0, 1), x = ip and
y = (1 − i)p into dp/dt = dx/dt + dy/dt and di/dt =
(dy/dt)/p − i(dp/dt)/p. Defining R = B/(1 + ν), this
yields

dn

dt
=

(
r

α(n)
(1 − n)− p

)
α(n)n (D1a)

dp

dt
=

(
α(n)n− 1 + νi

1 − gi

)
(1 − gi)p (D1b)

di

dt
=

(
Rp(1 − i)− 1 − d ln(p)

dt

1

1 + ν

)
(1 + ν)i. (D1c)

Here, the equations are factored to clarify their nullclines,
and without loss of generality, we have assumed no preda-
tion on consumers (m = 0). (Compare Eq. D1 to Hilker
and Schmitz (2008) for a similar model with frequency-
dependent disease transmission and no bistability).

Assuming that the long-term disease dynamics (under
Eq. D1) occur slowly relative to the consumer–resource
dynamics, the n-p dynamics approach a quasi-asymptotic
state (e.g., either steady-state or cycling dynamics) as i

slowly changes. We can understand these quasi-asymptotic
consumer–resource dynamics as follows:

Assuming constant i ∈ (0, 1), the dynamics of Eqs. D1a
and D1b can be understood from the n and p nullclines:

1

n

dn

dt
= 0 ⇒ p = r

α(n)
(1 − n) (D2a)

1

p

dp

dt
= 0 ⇒ G(i) = α(n)n. (D2b)

where G(i) = 1+νi
1−gi

is the fractional increase in the per-
consumer mortality rate divided by the decrease in fecun-
dity. Figure 6 shows an example of these nullclines using a
type II functional response.
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The p-nullcline (Eq. D2b) for fixed i is a vertical line
at the equilibrium value of n = neq. The coexistence equi-
librium occurs where these two nullclines intersect and is
stable when (1) the per-capita feeding rate α(n)n is increas-
ing at neq and (2) the n-nullcline (Eq. D2a) is decreasing at
neq. Cycling dynamics occur if the n-nullcline is increasing
at neq (where the coexistence equilibrium is unstable).

Prevalence i only affects the p-nullcline (Eq. D2a). Dif-
ferentiating α(n)n = G(i) with respect to i, it follows
that n∗ typically increases as disease prevalence i increases
since

sign

(
dn∗
di

)
= sign

(
d

dn
(A(n∗)n∗)

)
sign

(
d

di
G(i)

)
.

(D3)

Consequently, a slow increase in disease prevalence
should stabilize the system by increasing neq as shown in
Fig. 6.

Why bistability?

Having described the consumer–resource dynamics under
fixed i, we can clarify how density-dependent disease
transmission leads to bistability by simplifying the disease
(Eq. D1c). This can be done (albeit crudely) by considering
the criterion for disease to invade the disease-free cycle LC1

(see the next section for details):

Rp0 > 1. (D4)

Fig. 6 Nullclines for the Rosenzweig–MacArthur model (type II
α(n)) illustrating the consequence of reduced fecundity and/or
increased mortality among consumers. Assuming a fixed fraction (i)
of the population are diseased, increasing i shifts the p-nullcline to the
right, the direction of increasing stability. Changing i has no effect on
the n-nullcline. The coexistence equilibrium is unstable where the n-
nullcline is increasing (shaded gray, here the populations cycle) and is
stable where the n-nullcline is decreasing. This is generally the case
for any monotone increasing feeding rate α(n)n under Eqs. D1a and
D1b

Here, p0 is the mean consumer density over the disease-
free cycle. Note the similarity to the condition R0d > 1
necessary for invasion of the disease-free steady state EQ1.

Based upon this observation, we approximate Eq. D1c
by taking the “slow disease” limit of Eq. D1 which relies
on the mean resource density pi over the attracting cycle
or equilibrium point determined by Eqs. D1a and D1b with
fixed i.

Doing so yields the approximation

di

dt
= i (pi · (1 − i)− 1/R) R. (D5)

Computing pi over a range of (fixed) i values,
Fig. 7 shows how a disease-induced mortality and reduced
fecundity can each increase mean consumer density dur-
ing cycling regimes, when consumer–resource dynamics are
fast relative to changes in i. This “hydra effect” (Abrams
2009) appears to be what allows for bistability when dis-
ease transmission is density-dependent. Positive feedback
between p and i means that perturbing either a cycling
system with little or no disease could sufficiently increase
consumer density and push the system above threshold,
allowing persistence of disease at steady state.

More precisely, Fig. 8 shows the pi curve shown in
Fig. 7 which shapes the dynamics of Eq. D5 for differing
values of R. Stability is determined by where i is increas-
ing (pi(1 − i) > 1/R) and decreasing (pi(1 − i) < 1/R),
and the small peak in Fig. 8 is approximately where the
Hopf bifurcation occurs in the consumer–resource model
(Eqs. D1a and D1b). As in Fig. 7, equilibria to the left of
this peak correspond to cycles under models Eqs. D1a and
D1c and those to the right correspond to the endemic disease
steady state EQ2.

Figure 8 accounts for four of the five qualitatively dif-
ferent cases described for models Eqs. 1 and B2 in the text.
Though not shown, if the “Hopf peak” was to surpass the
critical value of p0 (the triangle in Fig. 8), then any values of
1/R between the peak’s maximum value and p0 would yield
bistability between disease-free cycles LC1 and the endemic
disease steady state EQ2 as in region 4© of Fig. 4.

Criteria for invasion of disease-free limit cycles

Equation D1c is equivalent to

d(ln i)

dt
= (1 + ν)(Rp(1 − i)− 1)− d(lnp)

dt
. (D6)

A criterion for the local stability of the disease-free limit
cycle LC1 (period T ) can be obtained by considering the
average rate of increase in i over that disease-free limit
cycle assuming an arbitrarily small i(0) > 0. Define the
instantaneous growth rate on LC1 as

λi(t) ≡ (1 + ν)(Rp(1 − i)− 1)− d(lnp)

dt
. (D7)
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Fig. 7 Nullclines for the
Rosenzweig–MacArthur model
(type II α(n)) illustrating how
the “hydra effect” (Abrams
2009) in this model allows
disease to paradoxically increase
the mean resource density
during cycling dynamics. The
mean and amplitude of the
consumer population are shown
as the p-nullcline (vertical line)
moves right as the fixed disease
fraction (i) is increased from
i = 0 to i = 1. Also shown is
the mean pi as a function of i.
See Fig. 6 for other details

The average growth rate over LC1 is therefore given by

T ≡ 1

T

T∫

0

λi(t)dt. (D8)

thus, LC1 is locally stable if T < 0 and disease invades if
T > 0.

Combining the above equations yields

T = 1

T

∫

0T

(1 + ν)(Rp(1 − i)dt − 1

T

∫

0T

d(lnp)

dt
dt (D9)

= (Rs − 1)(1 + ν)− 1

T
(lnp(T )− lnp(0)) (D9)

where s ≡ 1
T

T∫
0
p(t)(1 − i(t))dt . On the limit cycle p(T ) =

p(0) and s = s0 where s0 is the mean susceptible population
size over the disease-free cycle. These two facts together
with Eq. D9 yield the LC1 stability criterion

Rs0 < 1. (D10)

Note that in cases of bistability, sufficiently high initial
levels of disease can push the system beyond the basin of
attraction for disease-free cycle LC1 and result in disease
invasion despite Rs0 < 1 (Fig. 9).

Fig. 8 Example dynamics of Eq. D5 for multiple values of parame-
ter R. Equilibria in the region that is shaded light gray correspond to
cycles under Eq. D1. Note i > 0 requires Rp0 < 1 (triangle at i = 0).
In terms of the dynamics of models Eqs. D1 and B2, these equilibria
correspond to dynamic states where only the disease-free cycle LC1 is

stable (R1), only the disease cycle LC2 is stable (R2), both LC2 and
the endemic disease steady state EQ2 are bistable (R3), and only EQ2
is stable (R4). These correspond to the dynamics dominating regions
5©, 2©, 3©, and 1© in Fig. 4, respectively
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Fig. 9 Simulation showing the performance of the disease invasion
criterion for the disease-free cycle LC1 under constant–rates model
(Eq. 1) with fast spore dynamics. Parameter values were sampled from
uniform distributions with β ∈ (5, 11), f ∈ (0, 1), and ν ∈ (0, 3).
Disease invasion is shown by the slope of the best-fit line to log(i(t))
over 15 time units, with positive slope indicating disease invasion. The
quantity R̄s0 is as described in the text. Parameters used: r = 40,
α = 9, k = 0.6, m = 0, μ = 1900, and σ = 90
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